
LA-tJR -91-2532 /

LA-UR--91-2532

DE91 016311

TITLE Information Dynamics of Self-Programmable Matter

Carsten Knudsenl Rasmus Feldbergl, and Steen Rasmuasen

AUTHOR(S) 1
Physics Laboratory 111/Center for Modelling, Nonlinear
~ynamics and Irreversible Thermodynamics, Technical
University of Denmark; and Theoretical Division/Center
for Nonlinear Studies, Lorn Alamoa National Laboratory

Theoretical Division/Center for Nonlinear Studiem,
Loo Alan?os National Laboratory

SUBMITTEDTO Proceetdinga: NATOARWon Complex Dynamics and Biological
Evolution, Middelfart, Denmark 1990

DISCLAIMER

This repofi wmprepsrd nnan ~c~nl{)f wurk~pnm~by nnagcncy uflhc Unilcd!ilams

Govcrnmcnl. Neither the IJnmd SIaIeI G,warnment nor tiny nscncy Ihercof, nor any of drcir
1,

empluyea, mnkcu ■ny wtirmnty, express or implid, or annumcs any legal Iiabilily or responoi-
,,

hility for (he uwur~cy, completeness, or uscfulnem of any informalmr, ●pparslus, prducl, or

prwew dmcld, or rcprescn~s ~hai its LWCwould not infrmsc prmtcly owned ri~hln, Refer. “~J1. ~ , /99,

awe hcrcln 10 any qxufic commcrclml prtducl, prwcsa, or Bcrvmc by Irnde name, ~rademark,

manufncturcr, or otherwite dues nol neccsmllly uonstllu[c or Imply IIB cl,dorwmenl, rearm.

mcndatmn, or f~vorq hy the [Jnmd SIIICS (iovcrnmcnt or my qcrvcy thereof The VICWI

nnd opmwms of su!hors caprcmod hercm d{) nol ncca-~rily ~lwe or rer,txt Ihcmc of the

[Jnllcd Slslcn (;uvcrnmcnl or ●y sgcncy I$eroof

-.

Los
DISTRIBUTIONOF THIS DOCUMENT IS UNLIMITED

Allamos

@ M~~y[~
Los Alamos National Laboratory
Los Alamos,New Mexico E7545

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

ISFOR\lATIOS DYYA!!ICS OF SELF-PROGRAMMABLE MATTER

Carsten Knudsen,’ Rasmus Feldberg,t and Steen Rasmussen’

*Physicshboratory 111and ‘Center for Nonlinear Studies and
Center for Modelling, Complex Systems Group,
Son]inear Dynamics and Theoretical Division
Irreversible Thermodynamics MS 02S6
Technical University of Denmark h Alamos National ‘=borato~
DK-2800L}mgby IJM Alamos, New Mexico 87545
Denmark USA

ABSTRACT’

Using the simple obsemation that programs are identical to data programs ahcr
data, and thus programs alter programs, we have constructed a self-programmingsystem
baseu on a parallel von Neumann architecture. This system has the same fundamental
propeny as living systems have: the ability to evolve new properties. We demonstrate
how this constructive dynamical system is able to develop complex cooperative
smctures with adaptive responses to external perturbations. The experiments with this
system are discussed with special emphasis on the relation between information
theoretical measures (entropy and mutual information functions) and on me emergence
of complex functional properties. Decay and scaling of long=range correlations are
studied by calculation of mutual information functions.

INmODUmON

A fundamental feature of living organisms is the ability to compute, or process,
information,Infonrtation proccssht~ takes place over a wide scale of complexity ranging
from the simple processes by which an enzyme recognizes a particular substra:e
molecule, to complicated feedback regulations containing many different levels of
information processing, to the extremely complex processes of the human brain,

An example of biological information processing in a feedback loop is provided
by one of the negative feedback loops described by StUris et al, (1991) in [heir model
of oscillatory insulin release, The feedback control cart here be divided into at least
four different components: (i) ar, incre~~edamount of glucose in the plasma s[imulatcs

z

insulin production in the pancreas and secretion of insulin into the plasma; (ii) from
[he plasma insulin diffuses into the interstitial fluid: (iii) here insulin molecules a[tach

to receptors on the surface of the cell; and (iv) insulin activated receptors enhance the

uptake of glucose by the cells, which, of course, implies a decrease in glucose outside
[he cells.

his loop involves simple biochemical information processing such as the

recognition of receptors by insulin molecules and the subsequent attachment of the
molecules, In addition, there is information processing
transport of glucose over the celJ.membrane facilitated by
changes in the cell membranes protein molecules.

The most complex kind Gf biological information

involved in the acti\”e
a cascade of confirmational

processing is probably t}.:
abstract anti creative symbolic information processing in the human brain, Simple
aspects of these processes are subjects of numerous investigations. In particular a
variety of models of artificial neural networks have recently been proposed (see for

example Palmer 1988,and Touretzlcy 1990).

The theoretical foundation of information processing in man-made machines can
be desmibed in terms of computation theoty (Hopcroft and Unman 1979).In computa=
[ion theory, a number of different formalisms exist, of which the Turing machine (TM)
for historical reasons is the most well=known. The Turing machine has been examined
thoroughlyby mathematicians and computer scientists because it is believed to be able
to perform the most general type of computation, universal computation, This

conjecture is known as the Church=Tunng thesis (Hopcroft and Unman 1979).
Besides Turing machines, several other systems have been shown to support

universal computation, including cellular automata the kaku!us, Post systems, the
hard billiard ball computer, general recursive functions, classifier systems, partial
differential equatio~ von Neumann machines, and even 6 maps of the unit square
onto itself. It has been shovmthat each of these formalism is equivalent since any one
of them can simulate any other.

The information processing found in biological systems seems to be different in

nature from that of a Turing machine, In fac~ none of the above mentioned
computational paradigms capture the full spectrum of bimolecular information
processing.A fundamental property of computation in bimolecular systemsarises from
their ability to alter or program themselves, Seif=program,tningoccurs at all times and
length scales in bimolecular systems,

Although the above mentioned computational systems in principle can program
themselves, this capacity has never been studied or used. It is known that any of the

universal systems have [he following properties: (I) lhe abiiity to store information,
(11)~he ability to communicate information, and (111) the ability to perform non.trivi=
al information processing. These abilities are also found in the living cell, although
[hey are more difficult to classifi, However, using the same scheme to diwmss cle-
men[s uf bimolecular computation, we obtain:

3

(I) Storage and memo~ abilities: (1) single molecules, e.g. DNA and proteiris, and

(2) msemb!/disassembly of supramolecular structures, e.g. the q~oskeleton and the cell
membra,.e.

(II) Signal abilities: (1) diffusion (passive

information) occurs eve~~here in the cell,

(convection) and specific transport of materials,

transport of materials, energy, and

(2) active transport (non-specific
energy, and information) convection

occurs in the cytoplasm and specific transport occurs for example over the cell

membrane and along the microtubules, (3) confirmational changes (transfer of ener~

and information), e.g. of dynein and kinesin in relation to cilia mobility, and (4)

electromagnetic irradiation (transfer of energy and information), e.g. photochemical

processes in chlorophyll.
(III) Transformation abilities: (1) chem”cal reactions - often using signal molecules

as reactants to produce new signal molecules m products or using sigrials which act as

catalysts or triggers, and (2) transcription of DNA to RNA and translation of RNA into
protein molecules which fold up and act as constructive and regulatoV units in the cell.

From this scheme it should be obvious that most fundamental bimolecular

processes can be interpreted in terms of computation. These bimolecular processes

arc all coupled through a very complex network of fictional interactions about which
we only know certain details and in which the overall bauplan is still a mystery. The

cell continuously programs and re-programs Itself, and in multicellular organisms this

self-programming also occurs at the organism lwel (recall the discussion of the

feedback loop controlling insulin release).

Living systems can through a re-programming of some of their pam alter

functional properties which are of vital importance for survival. Viewed over longer

time scales this self-programming ability is also used to create new properties which are

incorporated through the selection process of evolution. Since any computational

universal system in principle, is able to program itself, we shall modi$ onc of them so

that we can study self-programming as a phenomenon in a much simpler and more

tractable system. We have chosen to modify the parallel von Neumann architecture,
The modified von Neumann machine (MVNM) is easy to program since most modern

digital computers are based on the von Neumann principle, and since the autonomous

dynamics of such a system even at its lowest level (one single instmction) has a clear
computational interpretation, We shall in the following focus on the emergence of new’
functional properties in MVNM’Swhich most clearly reflect the evolutional aspect of
biocomputing.

SELF-PROGRAMMABLE MATTER

We can in general terms define Self.programmable matter as a dynamical system

of functional interacting elements, or compositions of elements, which through

autonomous dymrnics can develop new composi[iorts of functionally active elemec:s.

Such systems are characterized by an ability to construct novel elements ui:hin

themselves. Thereby chemistry by definition becomes a particular kind of sclf-

program.mable matter. The physical properties (e.g. shape and charge] of the chemical
species define the possible interactions with other molecules and thereby their

functional prope~ies. Chemical systems create new properties through recombination

of molecules via chern.ical bonds. New combinations between existing molecules and
combinations of new molecules with other molecules then define new functional

properties. This defines a constructive or self-prograsnsrsmg;oop given by:
molecules* piysical p~perries - jhcriond properties * interaction * new molecules,

A an example of a self-programming
system we have defined a modified von Neu-
mann machine, called Venus. It consists of a
one-dimensional memory array, called the
core. This corresponds to the W (random
access memoty) in a modem digital computer.
Each clement of the core, a word, contains a

machine code instruction. There are 10
different instm~!iws, which are listed in
Table 1.An mstntction has three elements, an
opcode and two fields, A and B. Each field
consistsof an addressing mode and a numeric
field, the latter containing a non-negative
integer, There are four different addressing

modes, as shown in Table 2.

Many programs simultaneously execute
instructions in the core, A motdtor=like
function always discovers whenever two or
more instmtions simultaneously tty to obtain
write access to the same core addresses.
Thereby, write conflicts are resolved,

The model has several features which -

OPCODEI RJNmoN

DATB Non.exewtablcstalcmcm.
Terminatethe ~roccse
currently execuling. Can be
used for StOI!bR dsts.

MOV AB I COPYthe contenuof A to B,

ADD A,B Addtheuments of A to the
contentsof B andsewlhe
resultin B.

ISUBA,B Subtra~lhecontents of A
fromB andsave& resultin
B.

JMPA IMove the minter to A,

IJMZ~B If Bquale ~ro, move the
minter to A.

IJMNA,B If 9 dtierefrom-rot move
thenoialertoA,

DJN &B I DeerementB, and if B differs

Ifrom uro, move the pointer
to A.

CMP &B If A differsfrom B, skipthe
neti inwuetioo,e.g.moveLhe
pointertwo ucpe eimd
muead of one,

ISPL B Create e new processSI [he
addreu minted 10by B,

I ●ble 1.
are not found in ordinary multl=tasking
\’NM’s, One of the major differences is the presence of noise in our system. The task

of an ordinary VNM is to perform very specific calculations, detailed via programs
written by human subjects either in machine code or in a high=level language such M
FORTRA5J or C, In the presence of noise, most programs, e,g,, ordinaty differential
equation solvers or bookkeeping programs, would crash or give more or less
meaningless outputs, This is contra~ IO the Computations in biological systems in which

r

noise usually has a ve~ limited effect. One notion of noise in Venus is built in[o the

execution of the JIOV instmction. Wlen the MOV instruction (see Table 1) copies a

word, something might go ~70ng, and the word wri[ten to the memo~ can be altered.

This is the reason why ordina~ programs have a hard time executing properly. SUC!I

routines rely on perfect copying of data. There is an additional source of noise tha[

drives our system. Once in awhile a random pointer is appended to the execution

queue. Since processes can terminate by executing the DAT instruction, we make sure
the system is supplied with pointers via this stochastic mechanism. The mutation fre.

quency is one per Id copyings, and a pointer is appended to the execution queue ap-

proximatelyevery twentieth generation. A mutation of a machine code program always
}-ieldsa new legal program as opposed to a change in a high-level Ianguagc,which al-
most ccrtairdywill result in a syntax error.

The Venus system also incorporates a

notion of computational resources. This pre-

vents the simultaneous execution of too many

processes both in total and within a limited
spatial addressing area. l%c first limitation is
expressed in tcnns of an execution queue of
fixed length,which in all the simulations to be
discussed were of size 220. The cxecuticm
queue contains the addresses of the
instructions to be exc.mted. The second
limitation is duc to address-localized compu-
tational resources, which are measured in
fractions of onc execution. Each address in
the core y is at any time r associated with a
certain fraction r(r,y) of one execution. This
value is incremented by a fucd amount & at

each generation. However, the value can
never exceed some constant predcflned
fraction rm= of one cxecmion. When the
system executes a pointer from the execution

queue, it looks to the addresses in the im=

KDDRESSING EFFEC.lVE
MODE OPERAND

Theefkaive operand is
(imm~diate) tic value in the da[a

field. Example: MOV
#3,.. , has the effcc!ive
operand 3,

—.
The effeuive operand u

(d~ca) [he word pointed to by
tbe value in the data
field. Example: MOV
S2j. , has [be efkiw
operand lowed two
words towards increasing
addreasa,

The ekctive opcrmtdis
(ind~ea) feundby lookingM the

data field pointed10by
he WIuat d~!~ field, ud
tbcn using [be direa
mode.

N ‘nduect,onlythe
[mt&e:;eat valuepointed to by the

saud data field u
d~menled before being

—.. -

mediate neighborhood of the pointer and finds Iim sum of computational resources, If

this sum excccdsone, then the instruction will be executed. If noh the pointer will dis=
appear. The rcsourcc radius Rmsdefining the immediate neighborhood is three in all
simulations.

Instmctions arc oniy allOwecJto communicatcl c g, to read and write data, locally,

The allowed distance for reaci/wri;e access is 800 in ali simulations, However, in
contras with normal multitasking VNM’s,all processes can overwrite anything in their

neighborhood, as long u it does not Ocmr simultaneously with other processes, This

6

meam that there is no notion of indi~idual work spsce or, in biological :er~.s, there L:e

no predefine “proto-organisms” (cellulariV).

In all simulations, the system has been initialized randomly by a uniform

distribution of opcodes, addressing modes, and data fields. Previous studies showed that

the system can only evolve simple structures from a uniform distribution (Rasmussen

et al. 1990). One can increase the complexity of the dynamics of the system greatly by

supplying some kind of biasing of the initial core. In other words, we need to supply

the system with a reactive potential, in the sense that the different machine code

instructions need to be inhomogeneously distributed in the core to enhance many

spontaneous computations. This potential is conveniently introduced by placing a se!f-

replicating program in the randomly initialized core. This program has a replication

cycle of 18 generations and will very quickly produce a considerable number of

offspring, all of which will attempt to replicate unless they have been modified by noise

or have been ovenvritten. N mentioned earlier, most programs designed to work in a
noise-free environment vety quickly crash by making erroneous copies. Mother way in

which these programs begin to malfunction is by copying on top of other offspring,

which eventually happens since the core has a limited size, 3,584 addresses in the
simulations to be discussed. By using our interactive graphics simulator, we have

determined the lifetime of a well-functioning population of self-replicating programs to

be around 200 generations. After this, no copies of the original programs are left, Only

mutated versions with different functional properties are found. It is important to notice

that the effect of the self. replicating program is a good mixing of instructions, and not

a probing of the system with self-replicating properties. The last bit of this sophisticated

self. replication is gone after 200 generations.

M alternative and conceptually more satisfying method for supplying the system
with a reactive potential is to generate a random core by using a set of coupled Markov

matrices, This approach is current!: being investigated (Rasmussen et al, 1991),

In the simulations with Venus, many diiferent evolutionary paths have been

observed. Typically, after extermination of well-functioning self-replicating programs,
the system enters a phase in which massive copying of one or more instructions takes
place, In the beginning, this is mainly caused by the copying lcops of the former self-

replicating programs, Typically such a partiaily malfunctioning loop will move copies

of a si~gle word out into the vicinity of the loop, As a result, large areas of the core

will be filled with a single word, with unaltered opcode, amode, afield, and bmode, but

possibly different bfields. This runaway process introduces a kind of sensitive
dependence on initial conditions, m known from chaotic dynamical systems, However,

7

after some generations [he copying loops are destroyed, either by noise or by \? O\”

instructions ove~?iting ~hem. This signals the beginning of a new epoch for the system.

From this point on, the dynamics of the core is governed by large coherent groups of
single instructions of sizes ranging from one word to several hundred words. This is in
strong contrast to the dynamics in the first phase of the evolution, in which relatively
few instructions placed in the self-replicating programs were responsible for the

dynamics.

Naturally, the further development of the core depends heavily on the distribution

of opcodes at this point. The distribution of opcodes is determined by the irtsttuc[ion

copyin~ and therefore from this point on we see different evolutionary paths. For

instance, a core consisting mainly of SPL instn.tctions will lead to an evolution invohing

large areas crowded with pointers, while a core containing mainly MOV instmctions

will lead to a vety dynamical behavior concerning the contents of the core, but also to
a core with a small concentration of pointers. In the following we shall take a look at
three different evolutionary paths that are often obsemed in simulations with Venus.

If the core contains relatively manyjump instructions (e.g. JMP, JMZ, JMN, and

DJN) with immediate amode, the pointers will get caught at these, because an afield
with immediate addressing mode points to its own location in the core. In other words,
a pointer meeting one of these instructions will keep jumping to the same instntction
over and over again, until it is either killed by lack of computational resources, or the
jump inmn,xtion is ovcwrittcn by noise or a MOV instmtion. Of course, such a core
will be quite static with respect to the distribution of different instmctions, because
most pointers will be trapped at the jump instructions. Therefore, possible MOV

instntctions will only rarely be executed. This kind of core will be referred to as a fued
point core.This state constitutes a quite trivial form of cooperation, llte self=reinforcing
mechanism is characterized by the special mixture of instructions. With the presence
cf noise in this core, a new pointer will occasionallyactivate a successivenumber of the
MOV instructions, which, with a probability close to one, will repeatedly copy other
MOV insttuctiorts or one of the jump instructions until the new pointer geu trapped
at one of the jump instnxtions. Here, it may or may not suwive, depending on how
many pointerseach jump instntction in the neighborhood can carry in terms of compu=

tational resources. Such a fucd point sttucture is very stable towards perturbations.
As indicated above, another common evolutionary path evolves from a core with

a considerable number of SPL instructions. In such a core, a large pointer

concentration in an area will imply the execution of many SPL instmctions, leading to

even more pointers, constituting a positive feedback loop. The pointer concentration

in such areas will increase until lack of resources or the limited execution queue length
puu an end to [he growth. These SPL co]onies have a more irtteresting cooperative
dynamics than the fixed point ccres. The SPL instruction colonies cooperate in the
sense described above: bcally, they distribute pointers to iht~i neighbors,whichdo the
same, and globally, the colony ocrJpies all available computational resources in terms
of pointers, Sometimes wc obsetwc 5WC1MIaddressing areas with this kind of behavior,

Above a cerlain size, the different colonies compe[e for pointers. and an in:ermi::er:

beha%tiorbetween the are= can be obsemed. However, because of the lack of \fO\”

instmctions, the contents of (he core ANIbe consented.

,\ third and even more interesting evolution path is that of the MO\ ’-SPL

structure. If a core has a large number of MOV cnd SPL instructions, a very complex

cooperative stmcture can emerge. l%? cooperati~n works in the following way SPL
instmctions supply the stmcture with pointers, both to SPL and MOV instructions. This

is somewhat sirr.Jar to their function in SPL colonies, where they distribute pointers to

themselves. We can interpret this as a supply of free ener~ in thermodynamic terms.

The MOV part of the sttucture makes sure that both MOV and SPL inwuction.s are

copied, giving the structure the ability to move around in its envirmrnent and to locally

explore the spatial resource in terms of addresses in memory. The copying is thereby

also responsible for the growth of the stmture. This of course means that the svucture

does not have a well-defined genotype in a contemporary biological sense.
It generally takes several thousands of generations from the extermination of

copyingloops before the cooperative MOV-S?L structures appear. Typically the system

goes through several phases with relatively large concentrations of instructions other

than SPL and MOV before reaching the MOV-SPL state. Usually a core with a MOV-

SPL stmcture consistsof up to SOpercent SPL instructions, with most other instmctions

being MOV instructions; however, the ratio of SPL to MOV instructions may change

during the epoch.

Figure L ‘The shading used in
core and cellular views.

The MOV=SPL structure is vety stable, even though it is constantly subjected to

perturbations, because the MOV instnxtions copy wrds continuously. However, the

structure apparently does not change its basic functional properties. If we were to

change the opcode of a word, the functional properties of this word would clearly be
altered drastically. Since this happens all the time in the MOV=SPL stmcture, the

system has found an area in rule space where it is stable toward” such perturbations.

Stability in Venus is an emergent property rather than an intrinsic element of the
chemistry, because the elements of which the structures are composed are themselves

vety fragile,

In order to illustrate the micro. and macroscopic dynatics of the \fOV.SPL

structure, we have made m u different kinds of prcijections of the high-dimension~l

m

Figure 2. Core Potmait of a MOV-SPL stntcture. The upper row shows the opcodes a[
ad~resses Othrough 127, the second row the addresses from 128 through 255, ~~c.Black
underscores represent pointers. White squares indicate no recent references.

discrete phase space. The macroscopic dynamics is illustrated in Figures 2 and 3, in
which each opcode in the core is represented by a small bar. The shade of each bar

corresponds to the instmction type x explained in Figure 1, The figur~s show [he

opcodes in the core a[two different times in the evolution. Note that in both of the

core views, large parts are white. This merely means that these addresses have not been

referenced for a while; ~here are no empty words in the core. In Figure 2, we see [hat

the ac[ivity is restricted to higher addresses, wherea~ in Figure 3, approximately 100

generations later in the evolution, the structure has increased its domain, Note also [hat

most words are occupied by either SPL- or MOV-instructions, The black underscores

represent pointers,

Figure 4 shows a cellular automala-like VieW of part of i~]ecore. We have chosen

128 consea.nive addresses within the MOV-SPL structure. The opcodes of lhe ~ords

in this addressing region are shown as horizontal lines at consecutive time points. In
~his figure, time increases downwards. The black underscores here also represent

pointers. It is obvious that the microscopic dynamics is wv irre~lar, although :
macroscopic dynamics is presemed. We see how single words w sometimes consecui.i e

. words are ovem”tten. Also note that once in awhile an opcode different from MOV

or SPL appeam, caused by mutations. Groups of pointers suddenly appear or disappear.

In biochem.id terms, this stmcture has an imegukr metabolism.
l’le evolutionary stories described here, and additional ones, are discussed in

greater detail by Rasmussen et al. (1990 and 1991).

Flgusw 4. A cellular automata4ike view of a part of the core.

INFORMATION DYNAMICS OF VENUS

The dynamics of self-programmable matter is generally quite comple% as described

in the previoussectio~ and at the same time simulationsare computat iomdly vev time

consuming.It is therefore preferable to have some quantitative measures that are easily

computed and that signal changes in local or global dynamics. The calculation of such

measures would enable us to characterize the system’s behavior in terms of well-

established quantities.

In order to make sampling frequent and simple, we have computed some simple

information theeretic mc~ures. The chosen measures contain both spatial and temporal

ingredients, Such a combination of spatial and temporal me~ures is not necessarily

ideal for all applications. It can be required, however, if the ingredients of the computa.

II

~ional chemistries in ques[ion are such that there exists a preferred direc[ion in space.

To simplify things further, we shall here only consider the opcode, since lhe func~ional

propeflies of a word are mainly determined by this element.

The simplest of the measures is the spatial entropy for templates of size one S1.

The spatial entropy is defined as the usual Shannon entropy, calculated from [he
probability distribution pk defining the probability of finding an inst~ction wi[h [he

opcode k at an arbitrarily chosen site in the core

9

sl(f)=-~P#@pk)“

k.O

bother quantity of interest is the mutual information Ml. This is defined in terms of

the spatial entroptes SI and S2

hf~(f)- 2s#)-s~(f)

where

k=O 1=0 .

The interdependence between two events A 1 B eat be measured by the mutual

information. me mutual information can therefore reveal the emergence of comelations
between neighboring instructions and thereby the occurrence of new properties of

interactions. Of course, too large correlations, such as for the pattern “101O1O1O1O1O...,”
are not desirable, since they simply indicate that everything is overly dependent. The
appearance of mut~al information of intermediate values is of more interest, since ttis
could indicate that the system is able to perform non-trivial information processing
(bngton 1990).

The spatial entropy for templates of size two S2 is calculated from a probability
distribution pu whi~ as we shall discuss shortly, also captures some very important
temporal Correlationsthat determine the system’spotential functional properties, Tk

probabilityp~ is defined as the probability of finding an instmction with opcode k at
an arbitrary addressn, and an instmtion with opcode fat addressn + 1. Note that this
probability is not the same as the probability of finding opcodes k and 1as neighbors.
The reasons for the chosen definition are that pointers are incremented one word after
each execution anu that the pointers therefore in general travel towards increasing
addresses,with the obvious exception of the jump instructions.This means that chanr ‘“
in S2 can signal a change in the typical sequential order of exeeution of two
neighboring instructions. A change in the typical sequential exeeution order of
instructions is of considerable interest, since a change in the potential functional

properties ean indicate that the system is in the process of changing its global dynamics

IL

through some self-organizing

SI is approximately c~nstant,

process. If the spatial

the effect of a change

entropy for templates

in ST will immediately

of size one

show Up in

the mutual information JV1.

E)~erim~ntal Results

All experiments are performed wtiththe parameters and initial conditions discussed

in the previous section. During simulations, the above measures were calculated

frequently. The sampling rate is the same in all computer experirvents, namely one

sampling every 10 generations. As can be seen from Figures 5 and 6, the mocitored

measures change reasonably with this frequency, i.e. there are apparently no sudden

jumps in the measured quantities between samplings.

Figure 5 shows the entropy and the mutual information vs. time for a particular

simulation. In Figure 6a wc see the mutual information vs. entropy for the same

simulation, and Figure 6b shows the mutual information vs. entropy for another

simulation. In the following we shall describe these simulations in terms of their

information dynamics.

It appears that the process starts with a drastic increase in the mutual information,
while the entropy is almost unchanged. This is obsexved in both Figures 6a and 6b (the

simulation starts in the lower right-hand corner of the plots) and is caused by offspring

of the program initially placed in the core distributing their code. This process does not
influence the opcode distribution very much, since the program has a distribution of

opcc~desfairly close to :hat of a randomized core. However, the spreading of this code
influences the spatial correlations in the core and thereby the mutual information. After

about 200 generations the self-replication of programs stops because of malfunction

introduced by naise and programs writing on top of each other. Now the entropy starts

fzl!ing while the mutual information remains in the vicinity of 0,6 bits. This is especially

clear in Figure 6b but can also be observed in Figure 6a as a noisy plateau at the right.

most comer of the figure. The decreasing entropy in this phase is caused by partially

malfunctioning copying loops spreading out a large number of a par:kukr instruction.

For the simulations shown in Figures 5 and 6% we see that after about 4,000

generations, the mutual information drops to a level of about 0,2 bits, At the same time

the entropy drops to about 1,5 bits, and some oscillations in both the entropy and the

mutual information are observed, giving rise to a “cloud-like” picture of the information

dynamics in Figure 6a. In this part of the simulation the core is mainly populated with

MOV and SPL instructions and the pointer density is very high,

The epoch of the MOV-SPL structure continues until I =20,000, where a large
peak in the mutual information reflects a change in the functional properties of the

system (recall the discussion on mutual information in the previous section), From this
point om the changes in the entropy as well as in the mutual information become less

rapid and exhibit a stcpwisc character signaling yet another epoch of the system, In

this phase the core mainly consists of MOV-, SPL., and jump. instructions where mmt

J3

3.5

3.0

2.5
n
.-
ez.o

L

-c
U1.o

0.5

0.0

J

1 , ,

0
1

1 Oow 20000 30000 WOOO 50000
Time (generations)

1.0

,= 0.8
n:1: ,

I

“d-ma-ari)&i‘4606 -ioh’o
Time (generations)

Figure 5. (a) The usual Shannon entropy of the opcode distribution versus time. (b)
The mutual information versus tmle,

4’

,%.,

o.oo~--+fl
2.5 3.0 3.s

Entropy (bit)

I
(j>

*:,, ,.
,.. ,

0.0 I
1 r , r , 1

Ono 0!s 1.0 1.5 2.0 Zms 3.0 J.s
Entropy (bit)

Flgum4(a) showsthe mutual information versus theusual Shannon entropy for the
simulation shownin Figure S, (b) - mutual information versus entropy for another
simulation.

of the pOinlers are traDped at jump instructions.
(s

In the simulation ~ho~n in Figure 6b, the system leaves ~he pla~eau of partiaily

malfunctioning copying loops at r =1,100. At this point there is a rise in ~he mutual
information to a little above 0.9 bits followed by a drastic drop to a value of about 0.2

bits. After this We see the same cloud-like distribution of points in the figure as
obsemed in Figure 6a. Note that during most of this phase we see rapid changes of [he

mutual inforrnatiom while the changes in the entropy are more moderate. These

changes indica[e ~hat some dramatic changes ocar, while the opcode distribution is

only affected slightly.This kind of behavio: ISlikely to be caused by MOV instructions

shifting the contents of the core as opposed to the partially malfunctioning cop!-ing

loops multiplying single instructions into large areas of the core. These somewhat

organ.izel changes signal that the MOV instructions are activated many at a time,
reflecting some kind of structure in the pan of the core responsible for the dynamics.
Finally,at r=32,000we observe a drop in the mutual information to about 0.1 bits and
the disappearance of the large oscillations in the mutual information. This phase of [he
siinulation is obsemed in Figure 6b as a small point dense area just below the c\oud-

Iike point distribution. Compared to Figure 6a this final phase is somewhatmore active,
with small oscillations in the entropy and the mutual information. These oscillations are

caused by NIOV-instructions continuously re-organizing the contents of the core,

however, in a less organized and dramatic way than in the previous phase of the

simulation.
A rather coarse-grainedresum6 of the simple information dynamicswouldbe that

the system starts with a high degree of disorder, low complexity, and a high reactive
potential in terms of the initial distribution of opcodes. The system then evolves,
loweringthe entropy towards intermediate values, while the complexityincre~es. Then
the system wanders around in information space in a vety complicated manner
according to : information theoretic measures characterized by sudden changes in
both order ar,. complexity,where all major changesalwaysare associatedwith changes
in the functional properties. With a time horizon of 50JXM generations,most processes

end up in one of two different dynamical states, One is best characterized as a frozen

state, and the other may be characterized as recurrent or chaotic, The frozen state is

a perturhd fhtedpoint consistingof a variety of jump=instructions which have trapped
the pointers. The fixed point dynamics is in this situation often perturbed by two
factors. One factor is that some of the conditional jump=instructions periodically have
their bfields counted d- allowingtrapped pointers to escape. The other factor is the
introduction of random pointers. The overall effect of both of these perturbations is
small changes in ~he core reflected by small steps both in entropy and mutual
infonrtation. This type of dynamics is seen in the simulation shown in Figure 6a.
Another example of Ibis type of dynamim is the collapse, where all pointers disappear,

This also occurs quite often. 711etermhal state with recurrent dynamics is typically
found in situations where a major part of the core is ocapied by either MOV~or SPL.
instmctions. The MOV=dominatedcores have many MOV.instmctlons executed at each

generation chang: s content of Ihe core all of the time. This ~p of d!mmics is

seen in the simul~ nowIIin Figure 6b. In SPL-dominated cores the composition of

instnlctiOtl.S rer.: .J virtually constant, whereas the pointer d!marnics exhibits

pronounced intermittent behavior. The SP~dominated cores of course have maxima]

pointer density. The MOV-SPL stmcture often emerges as a transicm structure active

from generation 4,000 until generation 20,MKk In rare situations the MOV-SPL

swucture can surmlveeven after 100,000 generations. Since Venus is a universal system
it of course supports the thre~ main ingredients of computation (recall the discussion

in the pretious section): (i) the capacity to store information, (ii) the capacity to
exchange or communicate infotmatiom and (iii) the ability to process information in
a non-trivial way. Dynamical systems with these computational capabilities can
apparently, in therrnoclynarnicalterns, be characterized as operating in the immediate

\iciniry of a phase transition (Langton 1990).

Since the dynamics of Venus changes the instruction contents of the core and
thereby the roles governing the dynamics, the system often changes its computational
capabilities during a simulation. An example is one of the terminal states, the frozen
state (f~ed point cores with pointers trapped at jump instmtions), vcty efficient in

storing information. However, the system has in ?hisstate, which in thermodynam’cal
terms is equivalent to a solid state, !ost its ability to communicate and process
information. The chaotic or recurrent state (for example cores mainly populated With
MOV instructions) exhibits a pronounced ability to exchange or communicate
information but ordy a limited ability to perform nontrivial information processing.
This state can be characterized as a fluid state in thermodynamical terms,The MOV.

SPL structure is from a computational point of view more interesting. It is clear that

the MOV=SPLstmcture does not have a well-defined genotype, and consequently it
does not store information in the usual sense of data storage (recall (i)). However, it

is also clear from the previousanalysisthat the macroscopicdynamicsis preserved.l%e

systemtherefore, through some complicated codin~ stores its phenotype rather than
its genotype. With respect to (ii) and (iii), it is fairly obvious that non-trivial

computationsare performed, and that information is being communicatedby the MOV

instructions,within the structure itself,

One can generalize the mutual information be~een neighboring words to

investigablehtg-range correlations,When looking at Iong=rangecorrelations,almost all
Iemporal effects are removed, Changes in the furtctlonal properties/potential nre

certain to have taken place if long-range chelations should appear or disappear,

In the following, we shall discusslhe simulation shown in Figure 5 from this point

of view,

At time r =5,0CM, an interesting phenomenon is obsemed in the simulation
concerning the spatial correlations, Here, the mutual information of opcode, amode,

and bmode versus distance all decay smoothly. lf we ty to fit a power law to the decay,
we can describe the decay by a scaling exponent d

M(n)= A’f(l)n-a.

What is particularly interesting here is that all three decays can be characterized by the
same scaling exponent, a =0.4. One might suspect that this is always tti. ;ase since the

three elements of a word cannot be altered, but for example at r = 1,000, we find three

different scaling exponent& ranging from 0.64 for the opcode to 1.1 for the amode. At

later stages in the evolutiom e.g. at time r =20,000 and r =21,000, the exponents differ

by more than 30% from each other In Figure 7, the decay of correlations for the

opcodes is shown,

0.6

0<0

Figure 7. The figure shows the decay of correlations between opcodes as computed by
the mutual information at time I ● S,000,

After approximately20,000generations, both the spatial entropy S1and the mutual
information A/l have maxima, Since both S1 and Ml change rapidly around this time,
as can be seen in Figure 5, we expect to be able to find some indication in the long.
range correlation. At time f ■ 19,(XKI,we see from Figure 8 that there is a smooth decay
of Ml to values below 0,01 bit, The same is observed at time f =21,000 (see Figure 8c),
●xcept that the value of the mutual information here slightly exceeds 0,01 bit. If we
look :t the correlations at time I =20,000(Figure Hb), several peaks are observed, At

d!stances near 55 and 100, significantly greater values of the mutual information th~n
in the surroundings can be seem indicating long-range correlations. Since long-range

correlations indicate some relationship between sites in the core separated with some
distance, the emergence of such correlations signals that one or more MOV-instructions

move the contents of the core that specific distance. Thus, the long-range correlations
can be used to detect activity of one or more such MOV-instructions, enabling us to

detect changes in the core that have only insignificant influence on !he total distrloution

of opcodes, i.e. the entropy.

Yet another way of describing coherence in the core is by means of correlations

defined by !vfarkov matrices. In Lhe case of opcode we can define a Markov matrix

determining the probability Pij of opcode i at address n is followed by opcode j at

address n +J. Actually, such a matrix is intimately related to the spatial entropy Sz.

Furthermore, as we mentioned earlier, such Markov matrices can be used for supplying

the system with a reactive potential, instead of using a small self-replicating program,

simply by generating the in.itiai conditions on the basis of a set of low order Markuv

chains. We have calculated how the Markov chains determining the correlations
between an opcode at address n and an opcode at address n + 1 actually look at the

sampling times corresponding to Figure 8. Figure 9 shows 3-D pictures of these Markov

matrices. Note that the figure shows Iog(NO),where Nij is the number of occurrences
of cpcode j followingopcode i. Note that Pij can readily be calculated from IVij,

In Figure 9a the strong correlations between subsequent MOV- and SPL.
instmctions indicate that the core is mainly populated with these instructions at

t = 19,000. At t =20,000 several smaller peaks appear indicating fluctuations introducing

.IMZ and DJN instructions, ‘Iltis signals that an instability is unde~ay leading to an

increased concentration of instructions other than the ones ruling the cnre earlier,

Finally, at I =21,000 a new set of high peaks appears revealing a strong presence of

.YMZ, The instability has thereby changed the macroscopic composition of the

instructions, Note also that the small peaks indicating the emergence of DJN

instmctions have vanished. The DJN fluctuation hasdied out. Tbe transition occurring
in the system around 1=2t3,0(toindicated by the information dynam”csis thereby also
reflected in the opcode correlation matrices, In addition these matrices indicate which
instructions are involvedin the transition and whichnew instructions emerge in the new
epoch,

0.25

&.lo
c.-

0,00

(d

0.25

n
,< 0.20
n

000

0.2s

n
,e 0.20
A

,50,15

-c,-

0.00

0 23 50 1iJo 123 150
Dist$nce

[b‘)
+

!

1

0 25 30 100 125 ! 52
Dist$’nce

Figure 8, [a) ‘l%e spatial mutual information vs. distance at f = 19,000.(b-c) us (ii)
except at (=20,000 and I =21,000,Note the peaks in (b) around distances of 55 and 100,

20

Figure 9, ‘l%e occurrence of correlated opcodes at t = 19,(XM)(a), I=20,000 (b), and
t ●2 1,000(c), respectively

DISCUSSION
u

‘-awres associated w-i[h Ii\ting systems, the abilinOf the information processing . .

of systems 10 alter themselves through an introduction of novel properties is wha[has

made biological evolution possible. Now] propenies are introduced through changes

in [he biomolecules that constitute the organisms. We refer to systems ~i[h these
propenies u being self-progranwnable.To investigate the self-programming propery

of li~ing systems, we have designed a system far simpler and more tractable than

contemporary bimolecular systems. Despiw its simplicity, our system has the same

fundamental constructive properties u contempora~ bimolecular systems, We ha~e

seen how [his parallel von Neumann based self-programmable system is able to

successively develop novel functional propeflies and how complex cooperative structures

spontaneously emerge in the system. Frozen accidents determine the different

evolutionary paths in the system and thereby the particular details of the emerging

structures. We have discussed cooperative properties of the MOV-SPL stmcture, of the

SPL colonies, and of the jump cores.

These macroscopic cooperative structures are spontaneously generated in the

computational system, They emerge in a similar way as macroscopic dissipative

stmcrures do, i~ for instance, physico-chemica! systems. A thermod~amical
interpretation of the computational system yields an equivalence between the flux of

free energy and the flux of computational resources (executions per iteration), and an

equivalence between the microscopic degrees of freedom in the physico.chemical
system and all the possible functional interactions in the computational system, A

notable difference is, however, that our macroscopic computational structures change

even wi[h a constant pumping (executions per iteration), Due to our system’s self.

programming properties it does not stay in any f~ed macros~opic patte~ u for

instance a Raleigh-Benard convection or the chernkd reaction waves in a Belousov-
Zhabotinski reaction do. Our systemhas in addition the propeny biologicalsystemsalso
have: it can change itself and thereby undergo development.

How close the details of the processes and the details of the emergicg cooperative
structures are to evolutionary processes in biological symcms d to the stmctures
underlying contempor~ living systems we cannot say. The uetailed propenies of
biologicalevolution as well as the fundamental dynamics underlying life itself are yet

unknown. However, our definition of constructive, or self-pro~ramrnable, dynamical
system h= allowed us to start a systematic investigation of tmly evolutionaryprocesses,
We have freed our formal tools from any prede!ined evolutionary possibilities, Our

system picks its own evolutiona~ route and constmcts its own functional properties.
This is in contrast to most formal approaches discussing evolutionary processes, A

formal discussion of self.programmable systems is found in Rasmussen et al, (1991),

Another cons[mctive system based on the A=calculus is discussed in Fontana (1991),

One of the major problems associated with self-programmable systems is their

complexity. Since the functional properties of such systems depend on their dynamics,

-—

any characterization of d!-namics zc well as functional properties is difficult. W’e \vould

of course like [o be able to detect when novel fur.clional properties are in[roduccd and

how such new properties are characterized. It tLrns OUI~hat the Shannon entropy, [he

mutual Morma[ion, and Markov chains conmruc[ed from correlations, in particular
when combined, can be used for that purpose.

The simultaneous calcul:ition of S, and S2 (or M,) is an efficient way to determine

when a complex system is in a quasi-steady state and when the system is in a transition,

M alternative is to compare the states of the system at subsequent generations, which

perhaps is a lit~lefaster. For large systems such as Venus, this requires a considerable

amount of storage and retrieval of data which can be rather time consuming, The

calculation of the Shannon entropy S, alone is, of course, fast but if the instmction set

includes an instruction to exchange the contents of two words (which is an instruction

actually found in most modem microprocessors), then the execution of a large number

of exchange instructions would in general alter the functional properties drastically,

while S, would remain constant. In this case calculation of the ,nutual information

captures that something happens. Another example of the mutual information changing

while the entropy is virtually constant occurs when the small self-replicating programs

distribute their code into the core,

By also considering long-range correlations and the Markov matrices we obtain

more detaiied information about the dynamics of the system, The emergence of long-

range correlations indicates changes in the local interdependence of [he core.

Similarities and differences in the scaling exponents describing the decays of the

correlations of the different fields as a function of distance can be used to uncover

details about the dymamicsof the individual fields. Finally, the Markov matrices reflect

instabilities and fluctuations in the opcode distribution, and they in particular signal

which opcodes are involved in the transitions of the system.

Obviously, these measures are not sufficient to characterize the dynamics in all

details, and they do not uncover all the interesting details of the emerging cooperative

structures. However, the proposed measures have the advantage of being vety

accessible from a computational point of view, Several other measures have been

proposed, but they are eithe very complex to compute or cannot be computed at all,

Some of these me~ures are discussed in Bennett (1988 and 1989),

ACKNOWLEDGME~

We would like to thank Jeppe Sturis, Walter Fontan% Doyne Farmer, Chris

hngto~ and Erik Mosekilde for valuable discussions, Erik Mosekilde and Ellen

Buchhave are acknowledged for arranging such an enjoyable workshop,

REFERENCES 23

Bennett, C. H., 1989, Dissipation, Information. computational Complexity and the

Definition of Organization kl: “Emerging Syntheses in Science,” Pines, D,, cd.,

Addison-Wesley, Reading.
Bennett, C. H., 1988, Computational Me~urfX of Physical Complexity, b: “Lectures in

the Sciences of Complexity I,” Steim D. L., cd., Addison-Wesley, Reading.

Fontan~ W., 1991, Algorithmic Chemistry, in the proceedings of the Second Artificial

Life Workshop, SFI Studies in the Sciences of Complexity, Farmer, J. D, et

al., eds., Addison-Wesley (in press).

Hopcrof~ J. E., and Unman, J. D., 1979, “Introduction to Automata llteo~, Languages,

and Computation” Addison-Wesley, Reading.

Langtom C., 1990, Computation at the Edge of Chaos: Phase Transitions and Emergent

Computation ~ 4Z, 12-34.

Palmer, R., 1988, Neural Nets, ~ “Lectures in the Sciences of Complexity I,” Stein, D.

L,, cd,, Addison-Wesley, Reading.

RasmusseU S., Knudsen, C., Feldberg, R., and Hindsholm, M,, 1990, The Coreworld:

Emergence and Evolution of Cooperative Structures in a Computational

Chemistry, -~, 111-134.
Rasmusse~ S., Knudsen, C., and Feldberg, R,, 1991, Dynamics of Programmable

Matter, in the proceedings of the Second Artificial Life Workshop, SFI Studies in

the Sciences of Complexity, Farmer, J, D. et al., eds. Addison-Wesley (in press).

Sturis, J,, Polon.sky, K S., Blackrna~ J. D,, Knudsen, C., Mosekilde, E., and Van

Cauter, E., 1991, Aspects of Oscillatory Insulin Secretio~ these proceedings.
Touretzky, D,, cd,, 1990, Proceedings of the Neural Information Processing Conference,

NIPS 2, Morgan Kaufman Publishers,

